Numerical Solution of Fredholm Integro-differential Equations By Using Hybrid Function Operational Matrix of ‎Differentiation‎

Authors

  • K. ‎Maleknejad‎ Department of Mathematics‎, ‎Karaj Branch‎, ‎Islamic Azad University‎, ‎Karaj‎, ‎Iran‎.
  • R. Ezzati Department of Mathematics‎, ‎Karaj Branch‎, ‎Islamic Azad University‎, ‎Karaj‎, ‎Iran‎.
  • R. Jafri Department of Mathematics‎, ‎Karaj Branch‎, ‎Islamic Azad University‎, ‎Karaj‎, ‎Iran‎.
Abstract:

In this paper‎, ‎first‎, ‎a numerical method is presented for solving a class of linear Fredholm integro-differential equation‎. ‎The operational matrix of derivative is obtained by introducing hybrid third kind Chebyshev polynomials and Block-pulse functions‎. ‎The application of the proposed operational matrix with tau method is then utilized to transform the integro-differential equations to the algebraic equations‎. ‎Finally‎, ‎show the efficiency of the proposed method is indicated by some numerical ‎examples.‎

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Using operational matrix for numerical solution of fractional differential equations

In this article, we have discussed a new application of modification of hat functions on nonlinear multi-order fractional differential equations. The operational matrix of fractional integration is derived and used to transform the main equation to a system of algebraic equations. The method provides the solution in the form of a rapidly convergent series. Furthermore, error analysis of the pro...

full text

NUMERICAL SOLUTION OF INTEGRO-DIFFERENTIAL EQUATION BY USING CHEBYSHEV WAVELET OPERATIONAL MATRIX OF INTEGRATION

In this paper, we propose a method to approximate the solution of a linear Fredholm integro-differential equation by using the Chebyshev wavelet of the first kind as basis. For this purpose, we introduce the first Chebyshev operational matrix of integration. Chebyshev wavelet approximating method is then utilized to reduce the integro-differential equation to a system of algebraic equations. Il...

full text

NUMERICAL SOLUTION OF THE MOST GENERAL NONLINEAR FREDHOLM INTEGRO-DIFFERENTIAL-DIFFERENCE EQUATIONS BY USING TAYLOR POLYNOMIAL APPROACH

In this study, a Taylor method is developed for numerically solving the high-order most general nonlinear Fredholm integro-differential-difference equations in terms of Taylor expansions. The method is based on transferring the equation and conditions into the matrix equations which leads to solve a system of nonlinear algebraic equations with the unknown Taylor coefficients. Also, we test the ...

full text

NON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

In this article we have considered a non-standard finite difference method for the solution of second order  Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...

full text

‎Numerical solution of nonlinear fractional Volterra-Fredholm integro-differential equations with mixed boundary ‎conditions‎

The aim of this paper is solving nonlinear Volterra-Fredholm fractional integro-differential equations with mixed boundary conditions‎. ‎The basic idea is to convert fractional integro-differential equation to a type of second kind Fredholm integral equation‎. ‎Then the obtained Fredholm integral equation will be solved with Nystr"{o}m and Newton-Kantorovitch method‎.  ‎Numerical tests for demo...

full text

Numerical Solution of Integro-Differential Equation by using Chebyshev Wavelet Operational Matrix of Integration

In this paper, we propose a method to approximate the solution of a linear Fredholm integro-differential equation by using the Chebyshev wavelet of the first kind as basis. For this purpose, we introduce the first Chebyshev operational matrix of integration. Chebyshev wavelet approximating method is then utilized to reduce the integro-differential equation to a system of algebraic equations. Il...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 4

pages  349- 358

publication date 2017-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023